Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Effects of Injector Temperature on Spray Characteristics in Heavy-Duty Diesel Sprays

2018-04-03
2018-01-0284
This work investigates the impact of injector temperature on the characteristics of high-pressure n-dodecane sprays under conditions relevant to heavy-duty diesel engines. Sprays are injected from a pair of single-hole diesel injectors belonging to the family of “Spray C” and “Spray D” Engine Combustion Network (ECN) injectors. Low and high injector temperature conditions are achieved by activating or deactivating a cooling jacket. We quantify spray spreading angle and penetration using high-speed shadowgraphy and long-distance microscopy imaging. We evaluate differences in fuel/air mixture formation at key timings through one-dimensional modeling. Injections from a cooled injector penetrate faster than those from a higher temperature injector, especially for an injector already prone to cavitation (Spray C).
Technical Paper

The Effects of Injection Timing and Diluent Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2-D Imaging of OH and Soot

2000-03-06
2000-01-0238
The effects of injection timing and diluent addition on the late-combustion soot burnout in a direct-injection (DI) diesel engine have been investigated using simultaneous planar imaging of the OH-radical and soot distributions. Measurements were made in an optically accessible DI diesel engine of the heavy-duty size class at a 1680 rpm, high-load operating condition. A dual-laser, dual-camera system was used to obtain the simultaneous “single-shot” images using planar laser-induced fluorescence (PLIF) and planar laser-induced incandescence (PLII) for the OH and soot, respectively. The two laser beams were combined into overlapping laser sheets before being directed into the combustion chamber, and the optical signal was separated into the two cameras by means of an edge filter.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Technical Paper

Stochastic Knock Detection Model for Spark Ignited Engines

2011-04-12
2011-01-1421
This paper presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. The SKD set consists of a Knock Signal Simulator (KSS) as the plant model for the engine and a Knock Detection Module (KDM). The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies.
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
Technical Paper

Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine – Effects of Equivalence Ratio and Intake Boost

2018-04-03
2018-01-1252
Low-temperature gasoline combustion (LTGC) engines can deliver high efficiencies, with ultra-low emissions of nitrogen oxides (NOx) and particulate matter (PM). However, controlling the combustion timing and maintaining robust operation remains a challenge for LTGC engines. One promising technique to overcoming these challenges is spark assist (SA). In this work, well-controlled, fully premixed experiments are performed in a single-cylinder LTGC research engine at 1200 rpm using a cylinder head modified to accommodate a spark plug. Compression ratios (CR) of 16:1 and 14:1 were used during the experiments. Two different fuels were also tested, with properties representative of premium- and regular-grade market gasolines. SA was found to work well for both CRs and fuels. The equivalence ratio (ϕ) limits and the effect of intake-pressure boost on the ability of SA to compensate for a reduced Tin were studied. For the conditions studied, ϕ=0.42 was found to be most effective for SA.
Journal Article

Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions

2012-04-16
2012-01-0678
Future fuels will come from a variety of feed stocks and refinement processes. Understanding the fundamentals of combustion and pollutants formation of these fuels will help clear hurdles in developing flex-fuel combustors. To this end, we investigated the combustion, soot formation, and soot oxidation processes for various classes of fuels, each with distinct physical properties and molecular structures. The fuels considered include: conventional No. 2 diesel (D2), low-aromatics jet fuel (JC), world-average jet fuel (JW), Fischer-Tropsch synthetic fuel (JS), coal-derived fuel (JP), and a two-component surrogate fuel (SR). Fuel sprays were injected into high-temperature, high-pressure ambient conditions that were representative of a practical diesel engine. Simultaneous laser extinction measurement and planar laser-induced incandescence imaging were performed to derive the in-situ soot volume fraction.
Technical Paper

Soot Formation in Diesel Combustion under High-EGR Conditions

2005-10-24
2005-01-3834
Experiments were conducted in an optically accessible constant-volume combustion vessel to investigate soot formation at diesel combustion conditions in a high exhaust-gas recirculation (EGR) environment. The ambient oxygen concentration was decreased systematically from 21% to 8% to simulate a wide range of EGR conditions. Quantitative measurements of in-situ soot in quasi-steady n-heptane and #2 diesel fuel jets were made by using laser extinction and planar laser-induced incandescence (PLII) measurements. Flame lift-off length measurements were also made in support of the soot measurements. At constant ambient temperature, results show that the equivalence ratio estimated at the lift-off length does not vary with the use of EGR, implying an equal amount of fuel-air mixing prior to combustion. Soot measurements show that the soot volume fraction decreases with increasing EGR.
Technical Paper

Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels

2006-04-03
2006-01-0629
This work explores the potential of partial fuel stratification to smooth HCCI heat-release rates at high load. A combination of engine experiments and multi-zone chemical-kinetics modeling was used for this. The term “partial” is introduced to emphasize that care is taken to supply fuel to all parts of the in-cylinder charge, which is essential for reaching high power output. It was found that partial fuel stratification offers good potential to achieve a staged combustion event with reduced pressure-rise rates. Therefore, partial fuel stratification has the potential to increase the high-load limits for HCCI/SCCI operation. However, for the technique to be effective the crank-angle phasing of the “hot” ignition has to be sensitive to the local ϕ. Sufficient sensitivity was observed only for fuel blends that exhibit low-temperature heat release (like diesel fuel).
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Journal Article

Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine

2017-03-28
2017-01-0662
Spark-ignition (SI) engine efficiency is typically limited by fuel auto-ignition resistance, which is described in practice by the Research Octane Number (RON) and the Motor Octane Number (MON). The goal of this work is to assess whether fuel properties (i.e. RON, MON, and heat of vaporization) are sufficient to describe the antiknock behavior of varying gasoline formulations in modern engines. To this end, the auto-ignition resistance of three compositionally dissimilar gasoline-like fuels with identical RON values and varying or non-varying MON values were evaluated in a modern, prototype, 12:1 compression ratio, high-swirl (by nature of intake valve deactivation), directly injected spark ignition (DISI) engine at 1400 RPM. The three gasolines are an alkylate blend (RON=98, MON=97), a blend with high aromatic content (RON=98, MON=88), and a blend of 30% ethanol by volume with a gasoline BOB (RON=98, MON=87; see Table 2 for details).
Technical Paper

Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization

1999-03-01
1999-01-0528
A scaling law for the maximum penetration distance of liquid-phase fuel in a diesel spray (defined as the liquid length) was developed by applying jet theory to a simplified model of a spray. The scaling law accounts for injector, fuel, and in-cylinder thermodynamic conditions on liquid length, and provides significant insight into the fuel vaporization process. As developed, the scaling law is valid for single-component fuels, but can be used to model multi-component fuels through use of single-component surrogate fuels. Close agreement between the scaling law and measured liquid length data over a very wide range of conditions is demonstrated. The agreement suggests that vaporization in sprays from current-technology, direct-injection (DI) diesel injectors is limited by mixing processes in the spray. The mixing processes include entrainment of high-temperature air and the overall transport and mixing of fuel and air throughout the spray cross-section.
Technical Paper

Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets

2005-10-24
2005-01-3843
The reaction zone of a diesel fuel jet stabilizes at a location downstream of the fuel injector once the initial autoignition phase is over. This distance is referred to as flame lift-off length. Recent investigations have examined the effects of a wide range of parameters (injection pressure, orifice diameter, and ambient gas temperature, density and oxygen concentration) on lift-off length under quiescent diesel conditions. Many of the experimental trends in lift-off length were in agreement with scaling laws developed for turbulent, premixed flame propagation in gas-jet lifted flames at atmospheric conditions. However, several effects did not correlate with the gas-jet scaling laws, suggesting that other mechanisms could be important to lift-off stabilization at diesel conditions. This paper shows experimental evidence that ignition processes affect diesel lift-off stabilization.
Journal Article

Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction

2011-04-12
2011-01-0686
The fuel-ambient mixture in vaporized fuel jets produced by liquid sprays is fundamental to the performance and operation of engines. Unfortunately, experimental difficulties limit the direct measurement of local fuel-ambient mixture, inhibiting quantitative assessment of mixing. On the other hand, measurement of global quantities, such as the jet penetration rate, is relatively straightforward. Simplified models to predict local fuel-ambient mixture have also been developed, based on these global parameters. However, experimental data to validate these models over a range of conditions is needed. In the current work, we perform measurements of jet global quantities such as vapor-phase penetration, liquid-phase penetration, spreading angle, and nozzle flow coefficients over a range of conditions in a high-temperature, high-pressure vessel.
Technical Paper

Real-Time Measurement of the Volatile Fraction of Diesel Particulate Matter Using Laser-Induced Desorption with Elastic Light Scattering (LIDELS)

2002-05-06
2002-01-1685
A new diagnostic technique is described that has the capability of making real-time, in situ measurements of the volatile fraction of diesel particulate matter (PM). LIDELS uses two laser pulses of comparable energy, separated in time by an interval sufficiently short to freeze the flow field, to measure the change in PM volume caused by laser-induced desorption of the volatile fraction. The first laser pulse produces elastic light scattering (ELS) that gives the volume of the total PM, and also deposits the energy to desorb the volatiles. ELS from the second pulse gives the volume of the remaining solid portion of the PM, and the ratio of these two measurements is the quantitative solid volume fraction. Calibration is required for the individual total PM and solid fraction to be quantitative. Applicability of the technique is demonstrated for load and EGR sweeps for a turbocharged, direct-injection diesel engine.
Technical Paper

Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging

2007-04-16
2007-01-0647
This paper details the development and application of a Rayleigh imaging technique for quantitative mixing measurements in a vaporizing diesel spray under engine conditions. Experiments were performed in an optically accessible constant-volume combustion vessel that simulated the ambient conditions in a diesel engine. Two-dimensional imaging of Rayleigh scattering from a diesel spray of n-heptane and well-characterized ambient was accomplished by using a 532 nm Nd:YAG laser sheet and a low-noise back-illuminated CCD camera. Methods to minimize interference from unwanted elastic scattering sources (e.g. windows, particles) were investigated and are discussed in detail. The simultaneous measurement of Rayleigh scattering signal from the ambient and from the diesel spray provides important benefits towards making the technique quantitative and accurate.
Technical Paper

Quantitative Measurements of Residual and Fresh Charge Mixing in a Modern SI Engine Using Spontaneous Raman Scattering

1999-03-01
1999-01-1106
Line-imaging of Raman scattered light is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (premixed C3H8) in a modern 4-valve spark-ignition engine operating at idle. The measurement volume consists of 16 adjacent sub-volumes, each 0.27 mm in diameter × 0.91 mm long, giving a total measurement length of 14.56 mm. Measurements are made 3 mm under the centrally-located spark plug, offset 3 mm from the spark plug center towards the exhaust valves. Data are taken in 15 crank angle degree increments starting from top center before the intake stroke (-360 CAD) through top center of the compression stroke (0 CAD).
Technical Paper

Preliminary Design of a Bio-Diesel Plug-in Hybrid Electric Vehicle as part of EcoCAR 2: Plugging-in to The Future

2012-09-10
2012-01-1770
With a growing need for a more efficient consumer based automotive platform, Embry-Riddle Aeronautical University (ERAU) chose to redesign the 2013 Chevrolet Malibu as a Plug-in Hybrid Electric Vehicle(PHEV). A Series architecture was chosen for its low energy consumption and high consumer acceptability when compared to the Series/Parallel-through-the-road and the Pre-Transmission designs. A fuel selection process was also completed and B20 Biodiesel was selected as the primary fuel due to lower GHG (Greenhouse Gases) emissions and Embry-Riddle's ability to produce biodiesel onsite using the cafeteria's discarded vegetable oil.
Technical Paper

Predicting NOX Emissions from HCCI Engines Using LIF Imaging

2006-04-03
2006-01-0025
Our previous work applied LIF measurements of in-cylinder fuel distribution to predict CO2, CO, and HC emissions from an HCCI engine under low-load stratified-charge conditions. The prediction method is based on the premise that local fuel-air packets at a given equivalence ratio (characterized using LIF imaging) burn as if in a homogeneous charge at the same equivalence ratio. Thus, emissions measured during homogeneous operation provide an emission-versus- equivalence-ratio look-up table for predicting stratified-charge emissions. The present paper extends the technique to predict engine-out NOX emissions. Because of operating-range limitations, NOX look-up data for homogeneous operation cannot adequately be determined by experiment. Instead, a CHEMKIN-based model provides this look-up table data instead.
X